Control System Design for an Autonomous Helicopter Using Particle Swarm Optimization
نویسندگان
چکیده
This paper presents a control system design method for an autonomous helicopter using the Particle Swarm Optimization (PSO) method. In this paper, the nonlinear dynamic model of a miniature helicopter is directly used to design a control system without linearization process. The nonlinear dynamics of model helicopter is represented by sixteen state variables including flapping dynamics, engine dynamics, and rotor speed dynamics. PSO algorithm is adopted as an optimization solver. In the proposed method, controller gains are selected to minimize the error between the desired response and the actual response of helicopter control system. To improve the convergence speed, sequential quadratic programming (SQP) is integrated to the basic PSO algorithm. The performance of the designed control system for an autonomous helicopter is evaluated through fully nonlinear simulation.
منابع مشابه
Intelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach
There is a growing interest in the modeling and control of model helicopters using nonlinear dynamic models and nonlinear control. Application of a new intelligent control approach called Brain Emotional Learning Based Intelligent Controller (BELBIC) to design autopilot for an autonomous helicopter is addressed in this paper. This controller is applied to a nonlinear model of a helicopter. This...
متن کاملAN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کاملLoad Frequency Control in Power Systems Using Improved Particle Swarm Optimization Algorithm
The purpose of load frequency control is to reduce transient oscillation frequencies than its nominal valueand achieve zero steady-state error for it.A common technique used in real applications is to use theproportional integral controller (PI). But this controller has a longer settling time and a lot of Extramutation in output response of system so it required that the parameters be adjusted ...
متن کاملParticle Swarm Optimization Approach for Multi-Objective Composite Box-Beam Design
This paper presents a multi-agent search technique to design an optimal composite box-beam helicopter rotor blade. The search technique is called particle swarm optimization (‘inspired by the choreography of a bird flock’). The continuous geometry parameters (cross-sectional dimensions) and discrete ply angles of the box-beams are considered as design variables. The objective of the design prob...
متن کاملDirect adaptive fuzzy control of flexible-joint robots including actuator dynamics using particle swarm optimization
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the contro...
متن کامل